The effects of vacuum fluctuations on teleportation of quantum Fisher information
نویسنده
چکیده
The teleported quantum Fisher information of the phase parameter of atomic state is studied in consideration of vacuum fluctuations. Our results show that the teleported information is determined by the wavelength of the atoms as well as the distance of teleportation. When the wavelength of the atoms is much smaller than the teleportation distance, the teleported information decays with time and the decay rates are determined by the spontaneous emission rate of the atoms. However, when the wavelength of the atoms is much larger than the teleportation distance, the teleported information remains unchanged with time. The information of the phase parameter of atomic state has been absolutely transmitted.
منابع مشابه
Decoherence effects on quantum Fisher information of multi-qubit W states
Quantum fisher information of a parameter characterizing the sensitivity of a state with respect to parameter changes. In this paper, we study the quantum fisher information of the W state for four, five, six and seven particles in decoherence channels, such as amplitude damping, phase damping and depolarizing channel. Using Krauss operators for decoherence channels components, we investigate t...
متن کاملOptimizing Teleportation Cost in Multi-Partition Distributed Quantum Circuits
There are many obstacles in quantum circuits implementation with large scales, so distributed quantum systems are appropriate solution for these quantum circuits. Therefore, reducing the number of quantum teleportation leads to improve the cost of implementing a quantum circuit. The minimum number of teleportations can be considered as a measure of the efficiency of distributed quantum systems....
متن کاملTeleportation via an Entangled Coherent Channel and Decoherence Effect on This Channel
We study an entangled two-mode coherent state within the framework of2×2-dimensional Hilbert space. We investigate the problem of quantum teleportation ofa superposition coherent state via an entangled coherent channel. By three differentmeasures with the titles ``minimum assured fidelity (MASF)”, ``average teleportationfidelity” and ``optimal fidelity (f)” we study the ...
متن کاملElectromechanical Performance of NEMS Actuator Fabricated from Nanowire under quantum vacuum fluctuations using GDQ and MVIM
The Casimir attraction can significantly interfere the physical response of nanoactuators. The intensity of the Casimir force depends on the geometries of interacting bodies. The present paper is dedicated to model the influence of the Casimir attraction on the electrostatic stability of nanoactuators made of cylindrical conductive nanowire/nanotube. An asymptotic solution, based on path-integr...
متن کاملWigner function description of entanglement swapping using parametric down conversion: the role of vacuum fluctuations in teleportation
We apply the Wigner formalism of quantum optics to study the role of the zeropoint field fluctuations in entanglement swapping produced via parametric down conversion. It is shown that the generation of mode entanglement between two initially non interacting photons is related to the quadruple correlation properties of the electromagnetic field, through the stochastic properties of the vacuum. ...
متن کامل